Oxford Cambridge and RSA

GCE

Chemistry A

Unit F322: Chains, Energy and Resources
Advanced Subsidiary GCE

Mark Scheme for June 2014

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotation	
BP	Meaning
Blank Page - this annotation must be used on all blank pages within an answer booklet (structured or unstructured)	
and on each page of an additional object where there is no candidate response.	

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
$($)	Uords which are not essential to gain credit
ECF	Error carried forward
AW	Alternative wording
ORA	Oreverse argument

Subject-specific Marking Instructions

The following questions should be annotated with ticks to show where marks have been awarded in the body of the text:
2(b), 3(a), 4(a), 4(b)(iii), 6(a)(i), 7(d), 8(a), 8(b)

All questions where an ECF has been applied.

Checking additional pages

All the Additional Pages in the examination script must be checked to see if any candidates include any answers.

- When you open question 1(a)(i) you will see a view of page 22 one of the Additional Pages.
- If the page is blank then, using the marking mode, annotate the page with an omission mark, ^
- Scroll down to page 24 and annotate with a^{\wedge} if the page is blank.
- If pages 23 or 24 are not blank then use the paper clip icon to link the pages to the correct questions.
- You may need to contact your Team Leader if you do not know how to do this.

Generic comments

ORGANIC STRUCTURES

For a 'structure' or 'structural formula',

- ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)

For an alkyl group shown within a structure,

- ALLOW bond drawn to C or H ,
e.g. ALLOW $\mathrm{CH}_{3}-, \mathrm{CH}_{2}-, \mathrm{C}_{3} \mathrm{H}_{7}-$, etc.
- ALLOW vertical 'bond' to any part of an alkyl group

For an OH group shown within a structure,

- DO NOT ALLOW formula with horizontal - HO OR OH -
- ALLOW vertical 'bond' to any part of the OH group

For a CHO group shown within a structure,

- DO NOT ALLOW COH

For a 3D structure,

- For bond in the plane of paper, a solid line is expected:	\searrow
- For bond out of plane of paper, a solid wedge is expected:	\geqslant
- For bond into plane of paper, ALLOW:	
- ALLOW a hollow wedge for 'in bond' OR an 'out bond', provided it is different from the other in or out wedge e.g.:	

NAMES

Names including alkyl groups:

- ALLOW alkanyl, e.g. ethanyl (i.e. IGNORE 'an')
- DO NOT ALLOW alkol, e.g. ethol (ie 'an' is essential)

Names of esters:

- Two words are expected, e.g. ethyl ethanoate
- ALLOW one word, e.g. ethylethanoate

Names with multiple numbers and hyphens:
Use of ' e '

- ALLOW superfluous 'e' , e.g. propane-1-ol ('e' is kept if followed by consonant)
- ALLOW absence of 'e', e.g. propan-1,2-diol ('e' is omitted if followed by vowel)

Hyphens separate name from numbers:

- ALLOW absence of hyphens, e.g. propane 1,2 diol

Multiple locant numbers must be clearly separated

- ALLOW full stops: e.g. 1.2 OR spaces: 12
- DO NOT ALLOW e.g. 12

Locant numbers in formula must be correct

- DO NOT ALLOW propan-3-ol

Order of substituents should be alphabetical:

- ALLOW any order (as long as unambiguous), e.g. 2-chloro-3-bromobutane

ABBREVIATIONS

van der Waal's forces
ALLOW vdw forces OR VDW forces (and any combination of upper and lower cases)

Question			Answer	Mark	Guidance
1	(a)	(i)	(series of compounds with the) same functional group OR same/similar chemical properties OR same/similar chemical reactions \checkmark each successive/subsequent member differing by $\mathrm{CH}_{2} \checkmark$	2	IGNORE references to physical properties IGNORE has same general formula (in question) DO NOT ALLOW have the same empirical formula OR have the same molecular formula
		(ii)	$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n} \checkmark$	1	
		(iii)	More carbons (in ring) OR more (surface area of) contact AND more van der Waals forces OR stronger van der Waals forces \checkmark More energy needed to break the intermolecular forces \checkmark	2	Both answers need to be comparisons ALLOW ORA throughout ALLOW has more electrons OR larger (carbon) ring OR higher molecular mass IGNORE bigger molecule IGNORE chain instead of ring DO NOT ALLOW 'more contact between atoms' ALLOW 'VDW' for van der Waals 'More intermolecular forces' is not sufficient ALLOW it is harder to overcome the intermolecular forces ALLOW intermolecular bonds / van der Waals bonds ALLOW more energy is needed to separate molecules IGNORE more energy is needed to break bonds

Question		Answer	Mark	Guidance
(b)		tetrahedral four bonding pairs repel OR four bonds repel	2	Mark each point independently IGNORE surrounded by four atoms IGNORE four areas of electron charge repel IGNORE four electron pairs repel (one could be Ip) DO NOT ALLOW atoms repel
(c)			1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW structure of 1,2-isomer IGNORE molecular formula DO NOT ALLOW, structure of 1,1-isomer OR 2,2-isomer
(d)	(i)	$\mathrm{C}_{6} \mathrm{H}_{14} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12}+\mathrm{H}_{2} \checkmark$	1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW any correct multiple IGNORE state symbols

Question		Answer	Mark	Guidance
	(ii)	Cyclohexane will burn more efficiently \checkmark	1	KEY IDEA IS COMBUSTION OR BURNING Assume 'it' refers to cyclohexane ALLOW ORA for hexane ALLOW cyclohexane allows smoother burning OR promotes more efficient combustion OR increases octane number OR reduces knocking OR less likely to produce pre-ignition OR burns better OR easier to burn OR combusts more easily OR improves combustion OR burns more cleanly DO NOT ALLOW cyclohexane ignites more easily IGNORE cyclohexane increase volatility of fuel IGNORE reference to boiling points IGNORE cyclohexane gives a better fuel
(e)	(i)	(Compounds with the) same structural formula but a different arrangement (of atoms) in space \checkmark	1	ALLOW different spatial arrangement of atoms. DO NOT ALLOW different displayed formula.
	(ii)		2	ALLOW displayed OR skeletal formula OR mixture of the above. ALLOW structures in either order IGNORE molecular formula IGNORE structural formula IGNORE names IGNORE E/Z and cis/trans labels ALLOW 1 mark for a pair of E / Z isomers of an incorrect hydrocarbon structure with four C atoms e.g. C , or CH or CH_{2} instead of CH_{3} groups.

Question		Answer	Mark	Guidance
(f)	(i)	Step Equation Initiation (1 mark) $\mathrm{Br}_{2} \rightarrow 2 \mathrm{Br} \bullet \checkmark$ Propagation (2 marks) $\mathrm{C}_{6} \mathrm{H}_{12}+\mathrm{Br} \bullet \rightarrow \mathrm{C}_{6} \mathrm{H}_{11} \bullet+\mathrm{HBr} \checkmark$ $\mathrm{C}_{6} \mathrm{H}_{11} \bullet+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{Br}+\mathrm{Br} \cdot \checkmark$ $\mathrm{C}_{6} \mathrm{H}_{11} \bullet+\mathrm{Br} \bullet \rightarrow \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{Br}$ Termination (2 marks) $\mathrm{C}_{6} \mathrm{H}_{11} \bullet+\mathrm{C}_{6} \mathrm{H}_{11} \bullet \rightarrow \mathrm{C}_{12} \mathrm{H}_{22}$ $\mathrm{Br} \cdot+\mathrm{Br} \bullet \rightarrow \mathrm{Br}_{2}$ Two correct \checkmark All three correct $\checkmark \checkmark$	5	IGNORE state symbols IGNORE dots If an incorrect hydrocarbon with six C atoms is used: DO NOT ALLOW any marks for the propagation steps but ALLOW ECF for termination steps (i.e. 3 max)
	(ii)	The breaking of a ($\mathrm{Br}-\mathrm{Br}$) bond AND forms (two) radicals OR the breaking of a ($\mathrm{Br}-\mathrm{Br}$) bond AND one electron (from the bond pair) goes to each atom/bromine	1	ALLOW 'the breaking of a covalent bond' ALLOW the splitting of the bond in bromine ALLOW the breaking of a covalent bond where each atom keeps one of the bonding electrons IGNORE particle for atom ALLOW one electron goes to each product / species DO NOT ALLOW molecule or compound for atom IGNORE homolytic fission equations
(g)	(i)	$\mathrm{C}_{6} \mathrm{H}_{12}+2 \mathrm{Br}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{Br}_{2}+2 \mathrm{HBr} \checkmark$	1	ALLOW molecular formula only.
	(ii)	1,1-dibromocyclohexane OR 1,2-dibromocyclohexane OR 1,3-dibromocyclohexane OR 1,4-dibromocyclohexane \checkmark	1	Locant numbers MUST lowest possible e.g. DO NOT ALLOW 2,4-dibromocyclohexane etc. IGNORE structures
		Total	21	

Question		Answer	Mark	Guidance
2	(a)	It is an electron pair donor OR can donate a lone pair \checkmark	1	
	(b)	Dipole shown on the $\mathrm{C}-\mathrm{Br}$ bond, $\mathrm{C}^{\delta+}$ and $\mathrm{Br}^{\delta-}$ and curly arrow from the $\mathrm{C}-\mathrm{Br}$ bond to the Br atom \checkmark Curly arrow from : $\overline{\mathrm{O}} \mathrm{CH}_{3}$ to carbon atom in the $\mathrm{C}-\mathrm{Br}$ bond \checkmark Correct organic product \checkmark $\mathrm{S}_{\mathrm{N}} 1$ mechanism	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC IGNORE connectivity to $\mathrm{C}_{3} \mathrm{H}_{7}$ throughout IGNORE alkyl group in first marking point. Curly arrow must start from $\mathrm{C}-\mathrm{Br}$ bond and not from C atom. Dipole must be partial charge and not full charge $\mathrm{CH}_{3} \mathrm{O}^{-}$curly arrow must come from one lone pair on O of $\mathrm{CH}_{3} \mathrm{O}^{-}$ion OR from negative sign on O of the $\mathrm{CH}_{3} \mathrm{O}^{-}$ion ALLOW arrow from lone pair on O in $\mathrm{OCH}_{3}{ }^{-}$ Lone pair not required DO NOT ALLOW $\mathrm{CH}_{3} \mathrm{O}^{\delta-}$ DO NOT ALLOW incorrect connectivity of $\mathrm{CH}_{3} \mathrm{O}$ group in the final product $-\mathrm{CH}_{3} \mathrm{O}$ IGNORE Br ${ }^{8-}$ as a product ALLOW $\mathbf{S}_{\mathbf{N}} \mathbf{1}$ mechanism Dipole shown on the $\mathrm{C}-\mathrm{Br}$ bond, $\mathrm{C}^{\delta+}$ and $\mathrm{Br}^{\delta-}$ and curly arrow from $\mathrm{C}-\mathrm{Br}$ bond to the Br atom \checkmark curly arrow from $\mathrm{CH}_{3} \mathrm{O}^{-}$to carbonium ion \checkmark correct organic product \checkmark

Question		Answer	$\begin{gathered} \hline \text { Mark } \\ \hline 1 \end{gathered}$	Guidance
(c)		1-lodobutane increases the rate \square AND $\mathrm{C}-\mathrm{I}$ bonds are weaker (than $\mathrm{C}-\mathrm{Br}$) OR C-I bond has a lower bond enthalpy OR C-l bond needs a smaller amount of energy to break OR C-I bond is easier to break		All statements must be comparative ALLOW ORA IGNORE C-I bond is longer IGNORE polarity and references to electronegativity
(d)		 butyl ethanoate \checkmark	2	ALLOW only skeletal formula DO NOT ALLOW ECF from incorrect structure. ALLOW butylethanoate ALLOW butanyl for butyl DO NOT ALLOW butly
(e)	(i)	$\left(\frac{136.9}{291.1} \times 100\right)=47 \%$	1	ALLOW 47 up to calculator value correctly rounded. 47.0 or 47.03 or 47.029 will be correct common answers IGNORE any working shown.
(e)	(ii)	NaBr OR LiBr \checkmark	1	ALLOW correct name or formula DO NOT ALLOW HBr (it is an acid)
(e)	(iii)	Look at answer if 88.8\% AWARD 3 marks if $\mathbf{8 8 . 7 5 \%}$ AWARD 2 marks (not 3 sig. fig.) Moles of butan-1-ol $=0.08(00) \checkmark$ Moles of 1-bromobutane $=0.071(0) \checkmark$ $\%$ yield $=88.8 \% \checkmark$	3	Answer MUST be to 3 significant figures. ALLOW ECF but do not allow a yield $>100 \%$ ALLOW Mass of 1-bromobutane expected $=10.952 \mathrm{~g}$
		Total	12	

Question		Answer	Mark	Guidance
(c)		Look at answer if +63 kJ AWARD 2 marks If 63 (no sign) OR-63 (incorrect sign) AWARD 1 mark No of moles of $\mathrm{HI}=14$ moles Enthalpy Change $=+63 \mathrm{~kJ} \checkmark$	2	ALLOW one mark for +126 kJ Sign and value required. ALLOW ECF from incorrect number of moles of HI
(d)	(i)	Rate of the forward reaction is equal to the rate of the reverse reaction OR concentrations do not change \checkmark	1	ALLOW both reactions occur at same rate IGNORE conc. of reactants = conc. of products
	(ii)	More H_{2} and I_{2} OR less HI (equilibrium position shifts) to the left AND (Forward) reaction is exothermic OR reverse reaction is endothermic OR in the endothermic direction \checkmark	2	Mark each point independently ALLOW more reactants OR less products Note: ALLOW suitable alternatives for to the left e.g. towards reactants OR towards $\mathrm{H}_{2} / \mathrm{I}_{2}$ OR in reverse direction OR favours the left. ALLOW gives out heat for exothermic ALLOW takes in heat for endothermic IGNORE responses in terms of rate
	(iii)	No effect AND Same number of (gaseous) moles on both sides	1	ALLOW same number of molecules on each side

Quest	Answer	Mark	Guidance
(e)	Look at answer if (+)298 AWARD 2 marks If answer is -298 AWARD 1 mark (incorrect sign) $2 \times \mathrm{H}-\mathrm{l}$ bond enthalpy correctly calculated $(436+151-(-9)=)(+) 596 \checkmark$ H-I bond enthalpy correctly calculated (Bond energy for $\left.\mathrm{H}-\mathrm{I} \frac{(+) 596}{2}=\right)(+) 298 \mathrm{~kJ} \mathrm{~mol}^{-1} \checkmark$	2	ALLOW 1 mark for (+)293.5 $\mathrm{kJ} \mathrm{mol}^{-1}$ (bonds broken divided by 2) ALLOW 1 mark for (+) $289 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (incorrect expression i.e. $\left.\frac{436+151+(-9)]}{2}\right)$
	Total	11	

Question			Answer	Mark	Guidance
4	(a)		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=-38.3\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 4 marks IF answer $=(+) 38.3\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 3 marks (incorrect sign) IF answer = -38,300 (kJ mol ${ }^{-1}$) award 3 marks (used J instead of kJ). Energy q calculated correctly $=1149.5(\mathrm{~J}) \vee$ OR $1.1495(\mathrm{~kJ}) \checkmark$ Moles Amount, n, of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ calculated correctly $=0.03(00) \checkmark$ Calculating ΔH correctly calculates $\Delta \mathrm{H}^{\text {in }} \mathrm{kJ} \mathrm{mol}^{-1}$ to 3 or more sig figs \checkmark Rounding and Sign calculated value of $\Delta \mathrm{H}$ rounded to 3 sig. fig. with minus sign \checkmark	4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC Note: $q=50.0 \times 4.18 \times 5.5$ ALLOW 1149.5 OR correctly rounded to 3 sig figs (J) IGNORE sign IGNORE working ALLOW $53.18 \times 4.18 \times 5.5$ OR 1222.6082 OR 1220 OR correctly rounded to 3 or more sig figs in J or kJ IGNORE working IGNORE trailing zeros IGNORE sign at this intermediate stage ALLOW ECF from incorrect q and/or incorrect n Final answer must have correct sign and three sig figs ALLOW $-40.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ if 53.18 used in calculation of q ALLOW $-40.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$ if q is rounded to 1220 from 53.18 earlier
	(b)	(i)	(Enthalpy change) when one mole of a compound \checkmark is formed from its elements \checkmark $298 \mathrm{~K} / 25^{\circ} \mathrm{C}$ AND $1 \mathrm{~atm} / 100 \mathrm{kPa} / 101 \mathrm{kPa} / 1 \mathrm{bar}$	3	ALLOW energy required OR energy released ALLOW one mole of substance OR one mole of product DO NOT ALLOW one mole of element IGNORE reference to concentration

Question	Answer	Mark	Guidance
(ii)	$\begin{aligned} & 1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{C} l_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NH}_{4} \mathrm{ClO}_{4}(\mathrm{~s}) \\ & \text { correct species } \checkmark \\ & \text { correct state symbols and balancing } \checkmark \end{aligned}$	2	Second mark can only be awarded if all species in the equation are correct DO NOT ALLOW multiples of this equation
(iii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = (+)90 award 3 marks IF answer $=-90$ award 2 marks IF answer $= \pm 270$ award 2 marks IF answer $= \pm 2947$ award 1 mark Processing ΔH_{f} values $\pm(3832-885) \pm 2947 \checkmark$ OR $\pm(3832-885)$ subtraction using ΔH reaction $\pm(2947-2677)= \pm 270$ Calculation of $\Delta \mathrm{H}$ formation NO $270 / 3=(+) 90$	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC Note: $\pm 2947= \pm[-1676+(-704)+(6 x-242)]-(3 x-295)]$ ALLOW ECF for dividing by 3 from working that includes at least one $\Delta \mathrm{H}_{\mathrm{f}}$ and one balancing number and $\Delta \mathrm{H}(-2677)$ for 1 mark
	Total	12	

Question			Answer	Mark	Guidance
5	(a)		n \longrightarrow Correct polymer with side links Balanced equation for formation of correct polymer correct use of n in the equation and brackets \checkmark	2	Displayed formulae MUST be used to award each mark n on LHS can be at any height to the left of formula AND n on the RHS must be a subscript (essentially below the side link)
	(b)	(i)	$\mathrm{CH}_{2} \mathrm{CHCl}+2 \mathrm{O}_{2} \longrightarrow \mathrm{CO}+\mathrm{CO}_{2}+\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \checkmark$	1	ALLOW any other correctly balanced equation with the same reactants and products ALLOW $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ for $\mathrm{CH}_{2} \mathrm{CHCl}$
		(ii)	Sodium hydrogencarbonate neutralises $\mathrm{HCl} \downarrow$	1	Assume that 'it' refers to sodium hydrogencarbonate but DO NOT ALLOW other chemicals e.g. sodium ALLOW NaHCO_{3} is a base ALLOW forms a salt or sodium chloride or NaCl ALLOW equation to show formation of NaCl from NaHCO_{3} and HCl even if not balanced. IGNORE reacts

Question		Answer	Mark	Guidance
(c)		ANY TWO from abundance (in atmosphere) OR amount (in atmosphere) OR (atmospheric) concentration OR percentage (in air) \checkmark OR ability to absorb infrared/IR (radiation) \checkmark OR residence time	2	ALLOW absorption of infrared/IR
(d)	(i)	Any balanced equation between a metal oxide and carbon dioxide to form a carbonate $\mathrm{e} . \mathrm{g} \mathrm{CaO}+\mathrm{CO}_{2} \longrightarrow \mathrm{CaCO}_{3} \checkmark$	1	ALLOW MO for metal oxide
	(ii)	ANY ONE FROM deep in oceans OR in geological formations OR (deep) in rocks OR in mines OR in oil wells OR in gas fields \checkmark	1	Assume that 'it' refers to carbon dioxide but DO NOT ALLOW carbon DO NOT ALLOW reacted with oxides or stored as carbonates.
		Total	8	

Question		Answer	Mark	Guidance
(a)	(ii)	(Decreasing the pressure) decreases the rate of reaction AND Decreased concentration of molecules OR Number of molecules remains the same but the volume increases OR Less molecules per (unit) volume Less frequent collisions	2	Correct effect on rate must be linked to reason for the first marking point. ALLOW molecules are further apart IGNORE less crowded ALLOW particles or atoms for molecules ALLOW 'space' for volume DO NOT ALLOW area instead of volume ALLOW collisions occur less often OR decreased rate of collision IGNORE less chance of collisions 'less collisions' alone is not sufficient IGNORE successful
(b)	(i)	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \longrightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{CO}_{2} \checkmark$ Temperature: Between $20^{\circ} \mathrm{C}$ and $45^{\circ} \mathrm{C}$ inclusive AND Condition: Absence of oxygen OR anaerobic \checkmark	2	ALLOW correct molecular OR structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) IGNORE state symbols DO NOT ALLOW acidic or alkaline conditions If there is a contradiction or an incorrect answer in any condition given then do not award this mark. ALLOW conditions shown in the equation A limited supply of oxygen is not sufficient IGNORE pressure IGNORE yeast (in question) ALLOW Lack of oxygen
(b)	(ii)	$2 \mathrm{NO}+2 \mathrm{CO} \longrightarrow 2 \mathrm{CO}_{2}+\mathrm{N}_{2} \checkmark$	1	ALLOW multiples IGNORE state symbols
		Total	9	

Question			Answer	Mark	Guidance
7	(a)			1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above DO NOT ALLOW molecular formula ALLOW dichloro or diiodo compound instead of the dibromo compound as the only alternatives.
	(b)		Reagent A : correct halogen \checkmark e.g. $\mathrm{Br}_{2} /$ bromine	1	ALLOW Cl l_{2} if dichloro compound drawn ALLOW I_{2} if diiodo compound drawn IGNORE state symbols Answer must match box from (a) to score
	(c)	(i)	Steam AND acid catalyst \checkmark	1	ALLOW H ${ }^{+} /$named acid $/ \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{3} \mathrm{PO}_{4}$ ALLOW $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ ALLOW water only if a temperature of $100^{\circ} \mathrm{C}$ or above is quoted. IGNORE any temperature given with steam IGNORE pressure
		(ii)	(compounds or molecules) having the same molecular formula but different structural formulae	1	ALLOW different structure OR different displayed formula OR different skeletal formula for structure Same formula is not sufficient Different arrangement of atoms is not sufficient
		(iii)		2	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above ALLOW any vertical bond to OH DO NOT ALLOW OH-
		(iv)	Does not contain OH group(s) OR does not contain hydroxyl group(s) OR is not an alcohol Does not form hydrogen bonds with water \checkmark	2	ALLOW ORA throughout DO NOT ALLOW OH ${ }^{-}$(ions) / hydroxide (ions) 'Does not form hydrogen bonds' is not sufficient

OCR (Oxford Cambridge and RSA Examinations)
 1 Hills Road
 Cambridge
 CB1 2EU

OCR Customer Contact Centre

Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

